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1. Introduction

There are many numerical procedures for calculating the maximum likelihood

estimates for loglinear models of frequency data. The most popular methods are

the Iterative Proportional Fitting Procedure (IPFP) and variants of Newton's

method. For problems involving a large number of parameters Newton's method is

often impractical. On the other hand many models can not be expressed in a

form which allows the simple IPFP to be applied. In these circumstances some

other nonlinear optimization technique (e.g. the Generalized Iterative Scaling

method of Darroch and Ratcliff (1972) or the extensions of the IPFP due to

Haberman (1974)) must be used. As the basic IPFP is a well understood, robust,

and widely available algorithm it would often be desirable to cajole a given

problem into a form where the IPFP can be applied. We present a general

theorem on transforming contingency tables and several applications where the

transformation technique has allowed us to take advantage of the IPFP and

resulted in simple and useful procedures. A further advantage of this tech-

nique is that it is sometimes possible to recognize closed-form estimates in

the transformed problem while they would be overlooked in the original setting.

We shall view the estimation problem as one of minimizing the Kullback-

Leibler information distance between two probability mass functions (p.m.f.'s)

and will roughly follow the notation of Csisz~r (1976). Although we have

adopted the information distance point of view, the duality between maximum

likelihood estimation and minimum information estimation (see e.g. Darroch and

Ratcliff (1972)) implies that the results of this paper can just as well be

interpreted from the maximum likelihood point of view.
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2. Background and Notation

Csiszar (1976) presents a very elegant discussion of the IPFP by developing

a "geometry" for the information measure. A simplified version of the chief

results of this theory are outlined below. Let n, p, q, r, s, and t denote

p.m.f.'s which are non-zero for all elements of a finite set I. The Kullback-

Leibler information number (or directed divergence) specifies a distance,

I(pl q) - 1 E p(i) in (p(i)/q(i))

between p and q. The principle of minimum discriminant information, as form-

ulated by Kullback (1959), aims to minimize the distance between a reference

distribution, q above, and a family of other distributions. The properties of

such estimates have been studied extensively. The most important results can

be found in Kullback (1959) and are summarized, with a special emphasis on con-

tingency tables, in Gokhale and Kullback (1978).

We next develop an appropriate family,E , of p.m.f.'s. A convex set,E

of p.m.f.'s is called linear if when p and q are in E and t - a • p + (1-a) q

(ca cR) is a p.m.f., then t is also in E. A p.m.f. which satisfies

I(qffr) - min I (pjlr)
peE

is called the I-projection of r on E and will be denoted by q -]PE(r).

Csiszar gives conditions under which PE(r) exists (it is always unique) and

develops a geometry for I-projections by using an analogue of Pythagorous'

Theorem. Now let F - {ff :yer} be a set of real valued functions on I and

A - {a yr} be real constants. Define IMF to be span (F). A linear set,E,

can be constructed by considering the set of p for which,

Il p(i) f (i) a ; yrir- y
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When we consider s to be an observed probability function and

a = Z s(i) f () Y: rY iE:I Y

then the duality between maximum likelihood and minimum discriminant

estimation states that if

q =1 E(r)

then

ln(q) C M + ln(r)

and
A i
q - s C MF

i.e. q is the m.l.e. (under Poisson sampling) for the corresponding log-

affine model. Csiszgr's principle theorem says that if E is the finite

intersection of the linear sets Ek (i.e. E = El E) then q =PE(r)
keK

is the pointwise limit of q = IE (qn) n = 1,2,3 where qo M r and
n

En - Ei  if i - n mod IKI

Example 1. Ordered Categories

Let p be an observed 3x3 probability function obtained via multinomial

sampling and consider the ordered categories model

E " ( ij) q qij

and ln(q) - i + + J'yi + i.+ ; i,j - 1,2,3

The linear manifold for this model is spanned by a set of
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tables, f i f and fg i,j - 1,2,3. The subscripts R, OR, C andtale, R' OR' C; ' '

OC indicate that the vector corresponds to Row, Ordered Row, Column or

Ordered Column parts of the model, while the superscript indicates the

row or column number, e.g.,

, 0 0 0 0 0

2 2
fR 1 1 f OR 0 1 2

0 0 10 0 0 0

0 0 0 0 0

1 0
f1 1 0 0 f3O 0 0 1

1 0 0 0 0 2

The general structure is that fi (or fj) is a table of zeros except

for the ith row (jth column) which contains ones, i.e.,

f (k, 9) = 1 k i

R 0 k i.

Similarly, for the ordered row and column tables, the general form is

fi (k, Z) k-l j

oc 0

We now group the spanning tables into sets of related constraints. Let

F = {fi fO i = 1,2,3)

and

aF = 0fi fi j -1,2,3)

The sets of constants, AR and Act are determined by the inner products

of p with the spanning vectors.
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The linear spaces of p.m.f.'s corresponding to these constraints and

constants are:

ER {p.m.f.'s p s.t. E fA(k.).p(k,1) - a A
k,Z

A = ROR; i 1,2,31

EC { (p.m.f.'s p S.t. f p(k,Z) -a.
k, B

B = C,OC; j - 1,2,3}

In order to find the M.L.E.'s of cell probabilities for this model we

need to be able to compute q -FE(r) for r(k,t) = lYk , Z and E =

ER n EC * The theory tells us that this I-projection can be obtained by

cyclically projecting onto ER and EC.

U

j!
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3. Motivation for Transformations

As algorithms for the basic IPFP are widely available, it is often

advantageous for us to be able to pose a problem in a way that makes it

amenable to attack by means of these programs.

A very simple example, which is prototypical of those that will

arise in our later discussion, can be constructed as follows.

Example 2

Consider a triple of observed counts z = (zl, z2, z3) from 3

independent Poisson random variables with mean m = (m1, m2 , m 3) and

having observed values (1, 3, 5). Suppose we wish to fit the log-

affine model,

lIn(m) E In 2 + Al
1)

where span ) ()}

It is a simple matter to verify that the M.L.E. Is

& (.694, 3.611, 4.694) . Now consider the related contingency table

2z1 z 2  2 3

Z* 0 =

z2  2z 3 3 0

and the model for the mean, m*,
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ln(m*) E k( *

where M span 1 , the "independence"

0 1 0 1

manifold. This model has a closed-form M.L.E., namely,

5x5/13 5x13/18 1.389 3.611
,m* =II

5x13/18 13x13/18 3.j611 9. 389

Now note that

M*=
m 2  2m 3

In other words it is possible to fit the "difficult" model, M , by

transforming the table and fitting the "easy" model, M * , to the

transformed table. In the-process of doing this transformation we

have also recognized that the original log-affine model actually had

closed-form estimates, namely

2
m =- (2z1 + z 2  / (4 x (z 1 + Z2 + z3)

m2  - (2zI + z2 ) (2z3 + z2) (4 x (z1 + z2 + z 3))

= (2z3 + / (4 x (zI + Z2 + z3))

This example is clearly contrived to please Dr. Pangloss. We shall

later present a more realistic version with similar consequences.
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In the preceding example we transformed the data into a form where

it was much easier to compute the M.L.E. of the vector of expected

values. Of course we have yet to prove that the above manipulation is

any more than a numerical coincidence; such proofs are the subject of

this paper.

The idea of modifying a problem so that it is amenable to analysis

by existing or easier methods is not at all new. An old example of

this phenomenon is the method of filling in missing values to transform

an "unbalanced" analysis of variance into a "balanced" problem. Although

fitting an ANOVA model to an incomplete data array is conceptually easy,

the calculations are much simpler when the missing values are filled in.

The same is true of Example 2. Fitting the model M is not difficult but

the model M is much simpler.

For such a small problem as Example 2 there is little practical

advantage to be gained from the transformation technique. The motivation

for this research lies in some very large problems considered by Fienberg

and Wasserman (1981). We discuss their examples and some related theory

in section 5.

Thus far we have not given any motivation for the data transformation

of Example 2. We now continue the example and give a heuristic justifi-

cation of the method and at the same time present a more realistic version

of this problem.
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Example 2 (continued)

Let us consider a general log-affine model for the Poisson data, z,

with mean value, m, namely

in(m) F in(d) + M1

where d is any fixed triple of positive numbers and M is as before.

Note that if d is the vector of all ones then this reduces to a

simple log-linear model. Regardless of d , a version of the suffi-

cient statistics for this model are

v, = 2z1 + z 2

and

v2= z 2 + 2z 3 •V 2 2

Now consider the table z* as a transformation, g , of z , i.e.

g maps Z 3  Z2 x 2  such that

11 2 0 0

12 0 1 0 z

z2 0 1 0 (
0 0 2
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We now note that zl+ z+1 v, and z 2+ = z+2= v 2 . In other

words the sufficient statistics for the data z with model M{ are

represented twice in the margins of z*. Thus if we fit the row and

column margins model, M*, to z* we might expect the the likelihood equation

for model M is also satisfied. This turns out to be the case, but we have

ignored the question of whether m satisfies the log-affine model. We shall

see that if we fit the log-affine model

(3.1.1) ln(m*) E ln(g(d)) + 1l

to the data z* then the M.L.E., m, can be recovered. The simple IPFP,

with starting table g(d), will converge to the M.L.E.

In section 4 we discuss what conditions are necessary to justify

procedures such as those discussed above.

4. A Transformation Theorem

We present a collection of conditions (graniloquently labelled as

a theorem) relating to how one may transform estimation problems. First

we consider a very weak condition which will be used in the theorem and

which is itself sometimes useful.

The idea of this first result is that it is often possible to

fortuitously solve a difficult estimation problem by "accidentally"

satisfying the conditions. Consider the problem

maximize f(mIz)

subject to m E 0

where D is some constraint space. Assume f has a unique maximum over



and denote the maximizing m by i. Now consider the problem

maximize f(mIz)

subject to m e Dt

±~±
where D D D . Denote the maximizing m by m . It is a trivial

observation that if m E D then i t m . In other words, if the maximizing

~± +
value, m , under the weaker conditions, D', happens to satisfy the stronger

conditions, D, then Im is also the maximizer under the stronger conditions.

Notice also that we did not require at to be unique as the uniqueness of

i implies there is at most one i in D. This idea could be used anywhere

a constrained maximum is required but there is no guarantee that it will

be in D. We will use this general idea in frequency data circumstances

where we can prove that m will be in D and where the constraints V are

easier to deal with than the constraints V.

We now turn to a more refined version of this method. The statement

of the result is in terms of the Kullback-Leibler distance but could

equally be stated in terms of the (dual) likelihood function.

Theorem

Let g be a one to one mapping of the p.m.f.'s on a set I into the

p.m.f.'s on a set I . If E is a linear set of p.m.f.'s on I, then define

g(E) - (g(p):peE} . Let E* be a linear set of p.m.f.'s on I such that

g(E) C E*. If g is such that

(4.1) I(plJq) - k * I(g(p)Ilg(q)) for p,q £ E

and if ]E* (g(r)) C g(E), then

]PE(r) - g- (PE* (g(r)))
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The condition (4.1) could be generalized to allow I(pJIq) -

f(I(g(p) II g(q))) where f is any monotone one to one mapping. We have

no need for such generality here.

The theorem shows that under certain conditions it is possible to

calculate an I-projection in a transformed table and then invert the

transformation to obtain the I-projection in the original setting.

Verifying the conditions of the theorem may itself be a difficult task.

There are at least two ways of using the theorem. In some situations it

may be possible to define the linear set E*so that g(E) - E . This

is the easier case and it essentially just relabels the problem. However

even such simple relabeling can be helpful in interpreting the model or

recognizing, say, a model in the transformed space for which closed form

estimates are known to exist. The second application of the theorem

requires more work to verify the conditions, but is also more generally
E*

applicable. Here we take a linear set E which is much larger than g(E),

but we then need to prove that PE*(g(r)) e g(E). In other words, even*r
though E* contains g(E) we need to show that for any g(r), the I-projection

E*
onto E is always an element of g(E). For a particular set of data it may

be easy to verify this condition. All we need do is fit the transformed

model and see if the I-projection is in g(E). To prove this type of

result for a general class of problems is more difficult. We will

illustrate the simple case of the theorem with the following examples.

Section 5 will be devoted to a discussion of a set of examples where

g(E)C E*
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Example 3

This example is a continuation of Example 1. The problem concerns

a 3 x 3 table where the classifying variables have a natural ordering.

The specific model we consider fits row and column margins and linearly-

weighted row and column margins.

We have previously shown that the row and column constraints can

be considered in pairs and each of the pairs of constraints can be

individually fit. Thus if (w1 ,w 2 9 w3) are the current fitted values for,

say, the first row, we need to adjust this triple so that its row and

ordered row margins match some specified constants.

Let E S be the set of positive triples which satisfy the row and

ordered row constraints for the first row, i.e.,

F 1 1D
Es = fpositive triples, q : qI+ q 2a R a OR a3

and q+ 2q3  aOR a}

Now consider the function

w 12-2
1 2 2

1 -2 w3

and define

E* - 9( ES)

U x2tables such that a + b a a+ 2- a

d + c =d 4- b - a4}
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E*
Note that the constraints on E imply that b equals c which means that

-1 *g is well defined on E . It is not a difficult calculation to verify

that I(qJIw) - I(g(q)JIg (w)). Our theorem now allows us to calculate
-1

FE(w) as g 1P *(g(w)) •

The constraints which define E are just simple row and column

margins. Thus the I-projection, IP E((w)) , can be calculated by the

usual IPFP (i.e., adjusting row and column margins), or, as it is a

2 x 2 table, by direct calculation. As the logarithms of the starting

values, w , do not necessarily satisfy the model, the TPFP will in

general require several iterations to converge. Thus to obtain the

I-projection, I E(qn) n where ER is the space of P.D.'s which
ERnR

satisfy all of the row constraints, we could transform each row of the

3 x 3 table into a 2 x 2 table, calculate with the 2 x 2 table and then

-1
use g to return a triple of fitted values. The approach for the

columns would be similar.

There is another g , which transforms the entire 3 x 3 table into

a 2 x 2 x 2 x 2 table. In this case E g( E ) becomes the model of

no fourth order interaction for the 2 table. Specifically,

a b ca I b b c

2

g: d e f 1 d e f

1d Ie e

2 4' f

... .h

II i -' .. .. - ,- ....... Iili . . . . . .%h ... III, .. ....
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It is not difficult to check that the model of no fourth order interac-

tion corresponds to g(E) and that I(p1lq) = I(g(p)1lg(q)) . Therefore

the usual IPFP, with starting values g(e) and the model of no fourth
24

order interaction applied to g(q n) will yield a 2 table of fitted

values which can in turn be transformed (by g-) into a 3 x 3 table for

the original problem.

Example 4. Paired Comparison Models.

Davidson and Beaver (1977) have considered a generalization of the

Bradley-Terry model for paired comparisons which allows for ties and

order effects. Fienberg (1979) demcnscrated that the models of David-

son and Beaver were loglinear models and showed how the generalized

iterative scaling method of Darroch and Ratcliff (1972) can be used for

these models. We show how the simple IPFP can also be used to do the

estimation.

Consider the K x K x 3 contingency table z = {zij k } with mean,

m - [mijk} . The loglinear model corresponding to the Davidson-Beaver

model is (see Fienberg (1979)),

ln(mijl) - p + aij + aI  + 6.
1 i

ln(mij2) = P + aij + + Si

and

ln(m. 3 ) = " + a.. + + 1
33 2(i 6.) ,

for which the sufficient statistics are

[Z {Z and {z .(
{zj+} , ++k , and + +i2 + (z + )+i3

ij+2 +3 +i
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Thus the likelihood equations are

(4.2) mij+ = zij + = 1,2,..., K

(4.3) m++k = z++ k  k 1,2,3

and

i+1 + 3+i2 + 2(^i+3 + m+i3)

1

zi+ I + z~i 2 + I(zi+ 3 + z+i3) i 1,2,..., K

Fienberg (1979, p. 481) writes out the Darroch and Ratcliff algorithm

for this problem.

We transform z into the K x K x 4 table z* where

(4.5) zij I = 2 x zij 1

(4.6) Zij 2  = 2 x z j 2

(4.7) ziJ 3  zij 3

(4.8) ziJ 4  zij , i,j = 1,2,..., K

with transformed likelihood equations

(4.9) mij +  , z-j +  i,j = 1,2,..., K

(4.10) -++k  ' z4+k k = 1,2,3'1~A +A** *

(4.11) m 1 + m+1 2 + m1 +3 + m+13  zi+1 + z+. 2 + zi+ 3 + z+i 4

iul,2,...,K
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(4.12) m i+1 + m+i 2 + m1+4 + '+i4 = zi+ 1 + z+i2 + zi+ 4 
+ z+i4

i = 1,2, ... , K

As the likelihood equations involve simple sums of cell counts, the

basic IPFP may be used for this problem. To invert the transformation

(4.5) - (4.8) it is necessary that mij 4 = mij 3 • Equations

(4.9) and (4.12) ensure this. Thus the M.L.E. m is

^ 1 ^
*

(4.13) mijI  - ij1

(4.14) mij2 'ij2

(4.15) mi - mij 3 = mij 4

To make the argument rigorous it is necessary to show that if mijk

satisfy (4.9) - (4.12) then

(i) mij3 " mij4

and

(ii) mijk defined by ( 3.13) - (3.15) satisfy

(3.2) - ( 3.4) •

Condition i) has already been mentioned and condition (ii) is easily

verified by substitution.

This example has again been a case where the transformed table and

model are in one to one correspondence with the original table and

model. The transformed model can be fitted using the simple IPFP but

as the sufficient statistics are not only margins of z , many standard

computer packages would have difficulty with this problem. 3
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5. Social Networks

In recent years there has been an increasing interest in models

for the analysis of data from social networks. A line of research

described by Holland and Leinhardt (1981) and further developed by

Fienberg and Wasserman (1981) and Fienberg, Meyer and Wasserman (1981)

has been particularly fruitful.

The basic data for these models consists of observations on the

arcs of a directed graph (digraph) on g nodes. The nodes, often

taken to represent individuals or organizations in a community, are

called actors. The directed arcs linking the actors represent such

notions as the attitudes of an individual toward another or the flows

of resources between organizations.

A social network with a single relationship connecting actors can

be described by an adjacency matrix,

1 if actor i connects to actor j (i -i j)
10 otherwise

Holland and Leinhardt (1981) develop a model, which they refer to as

p I ,and several submodels for such digraph data. Fienberg and

Wasserman (1981) extend these models to the case where the actors form

disjoint groups and interest lies in the flows between groups.

Fienberg, Meyer and Wasserman (1981) further extend these results to

the situation where more than one relationship is observed between the

actors or groups.

From a computational point of view all of these models are

similar. For each of them the likelihood function can be viewed
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as the Poisson likelihood and the models are either loglinear models or

affine transformations of loglinear models for the mean-value parameter.

There is a further similarity in that for each case a natural presenta-

tion of the data involves non-rectangular data arrays but there exist

transformations of the data into rectangular structures for which the

transformed sufficient statistics are simple margins. We will consider

the simple version of the problem, involving a single relationship

between actors and the most general version, involving multiple rela-

tions between groups of actors. For these cases we will prove that

the simple IPFP can be applied to the transformed data in order to fit

the desired models using the method of maximum likelihood.

In order to develop these results we need to consider the original

data and distributions. Our presentation will emphasize the mathema-

tical structure, ignoring the interpretation of, and motivation for,

the models. We turn first to a development of the Holland and

Leinhardt p1 distribution.

We consider the matrix X = {Xij, i = j = 1,2,..., g) as a random

matrix to which the distribution will apply. Consider the dyads,

or subgraphs, Dii , between actors i and j , where

Dij = (Xi , X.).

The random variable Dij has 4 possible values,

Dij = (1,I) : Mutual

Dij - (1,0) or (0,1) Asymmetry

Dij = (0,0) Null

ILi
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Under the assumption of dyadic independence, Holland and Leinhardt

(1981) propose the use of the exponential family of distributions,

P(X- x) exp f x X +ei<j ij ji 8 -

+ £iat. x++ j X 8jB+j,{a

Now consider the random variable Y ,equivalent to X ,which is

defined, for i < j, as

Y ij Xij * Xji: Mutual

Yijl0 X (i - X ji) Asymmetric

Y ijol (i- X)ij Xji Asymmetric

Y ij00 (1 - X.)(1- Xji) : Null

corresponding to the values of Dij. Fienberg and Wasserman (1981)

show that in terms of Y , the log likelihood function for the model

P1  is:

£(p, e, {l}, { } lY)

P EJ E Yijll + 8 E" (Yijl0 + Yijol + 2yijl
j i<j -i ijlO i

+ E ai[ zi(Yijl0 + yijll) + E (Yhiol + Yhill ) I
i j>i h<i

+ a j[ 7E (yijlO + Yijll ) + E (YJhOl+ ]jhllJ <j J<h J Yhl
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Now view y as an element of V = {P.m.f.'s on the index setK} where

K - {(i,j,k,.); i < j = 1,2,.... g; k,t = 0,1} . If we consider y to

be distributed as a collection of independent Poisson random variables

with mean q e Y then the likelihood is exactly that which would be

obtained by using the loglinear model

K
In(q) e M c R

The manifold, M , is spanned by the vectors f C

6 = 1,2,..., 2 + 2g , given by

1z = 11 (k,L) = (1,1)
(5.1) P f

l0 : otherwise

2 :(k,) - (1,1)
(5.2) a = 1 (k,2) =(1,0) or (0,1)

0 otherwise

: (k,)= (1,1) or (k,£) = (1,0) and

(5.3) a f2+i' j > i', i i' for (k,£) - (1,0) and
ii {0, io<

V - 1,2,.., g . : otherwise

I : (k,) = 1,1) or (k,t) = (1,0) and j = J',
(5.4) j f2+g+j' = i > J' or (k,t) = (0,1) and i = j', j < i

3' 1,2,.., g 0 : otherwise

This spanning set was chosen so that the inner product of an observed

y with the f's yields the sufficient statistics:
1

(5.5) p a r E yijl
3 i<j
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(5.6) e a2  Z (YijlO + Yijo + jil
j 2 i)

2+i'

(5.7) ot, a = Z (Y., + yi + i (Yhi'Ol + '
j>i' 1 jlO 'jOl h<i, hhi'll

i= 1,2,.., g

2+g+j' ( + + , (yl +(5.8) Bit a a 10 +Yjl yij'll ) + V hyj 10 Y j, 'h11)

i<j' h>j '

J' = 1,2,.., g

We now collect the spanning vectors into F = {fh h = 1,2,...,

(2+2g)) and the observed sufficient statistics into

A u {ah: h = 1,2,..., (2+2g)) . If we define the linear space of

P.D.'s, E, by the constraints, F, and corresponding constants, A

then the M.L.E. is

q = PE(r)

where rE Y and rijkZ = c V(ijk9L) c K Thus a natural setting

for the estimation of p1  is as a loglinear model on Y. As the

vector f2 is not a zero-one vector, and cannot be cast in this form,

the basic IPFP can not be used for the estimation problem. In addition

for many problems g will be so large that Newton's method can not be used.

It would be desirable if the problem could be put in a form where a

standard algorithm could be used.

The space V is a rather convoluted construction. It would be

more natural to work with V = {p.m.f.'s on the index setK } where

- {(i,j,k,Z) : i,j = 1,2,..., g ; kZ = 0,11 , the space of

g x g x 2 x 2 tables. To this end consider the transformation
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g V V * with Y* g(Y) defined by

• = { YijkZ 
i < j

YJi~k 0 i = j

In other words we have transformed the problem into a g x g x 2 x 2

contingency table with zeros on the "diagonals". The sufficient

statistics (5.5) - (5.8) appear (sometimes more than once) as the

(121, [13], [14], [23], [24], and [34] margins of y~. Now consider

the linear space of p.m.f.'s, E, defined by

F* = {[12], [13], [14], [23], [24], and [34) margin functions}

and

A = ([121, (13], [14], (23], [24], and [34] margins of y*}

We should note that E is not equal to g( E ). In fact,

g(E) E £ O {ijkZ : Y*k Yik
E)'y j k 9 : Yij kZ j ji Zk1

In other words g(E) is a strict subset of E • As the model, E

requires just simple margins of a rectangular data array, the basic

IPFP found in many computer packages can be used. We would like to be
E* *

able to fit just E to y , ignoring the symmetry constraints.

Let

q, IPE , (g(r))

where

rijk Z g(r) 0 - j

As q is easy to calculate we would like to assert that q c g(E)
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E* *

One method of proceeding would be to go ahead and fit E to y

If q has the desired symmetries then all is well. In general we

need to prove that for an arbitrary y , q must be in g( E)

Our first version of this proof relied upon the actual calcula-

tions involved in the IPFP to show the symmetry. The proof presented

here is much simpler and relies only on an invariance argument.

Let h denote the mapping from F gxgx2x2 into F gxgx2x2 defined

by

h : ZijkZ - zjiik

i.e.,the symmetry transformation. In order that q be in g( E) we

require that

h( IPE,(g r)) = e (g r))•

Now notice that

h([12] margin function) [12] margin function ,

h[13] margin function) [24] margin function ,

and that each of the other margin functions in F is mapped into

another margin function in F* Similarly

h([13] margin for data y*) = [24] margin for data y

In other words, h( F *) = F* and h( A*) u A* which together imply

that h(E*) = E*. Also note that h(g(r)) g(r). We can then

assert that
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q (g)) h()(h(g(r))) h(q*)

and hence the result.

We have now shown that the M.L.E. q resulting from fitting E *
• -l *)

to y is in g(E ) and hence q - g (q)

There are numerous submodels of p1  considered by Holland and

Leinhardt (1981) and Fienberg and Wasserman (1981). These models,

represented in terms of par~meters and margins in the y* table

are listed in Table 5.1.

Table 5.1 Submodels of p1

Special Case Parameters Margins Fitted

(i) Ple,{ai},{ } [12] [131 [14]
-1 [23] [24) 134)

(ii) e,{ i},{10} [12] [13) [141
1i (23] [24]

(1ii) [,,{ci [12) [13) [241
[34]

(iv) 6,{a I}  [12] [13] [24]

(v) p,O,{$.1 [12] [14] [23]
j34]

(vi) (121 (141 [23]

(vii) 0,8 [12] [34]

(viii) 8 [12] [3] [4]

Each of these sets of margins are invariant under h and the above

argument is applicable.
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For the p1  problem all of the models in Table 4.1 can be fit

using the basic IF? or the data y

Our second example concerns a class of loglinear models for

multivariate directed graphs as described in Fienberg, Meyer and

Wasserman (1981). They consider a set cf dat. concerning the inLer-

relationships between 73 organizations in a small community. Three

types of relationships were observed for each of the pairs of organi-

zations, but for simplicity we restrict our attention to two of these

criteria, support and money. For each criterion the organizations were

asked to respond to the questions:

(i) to which organizations do you give support (money)?

(ii) from which organizations do you receive support (money)?

A particular directed relationship (i.e., giving or receiving) is

regarded to be present if either or both the organizations in a pair

perceived the relationship. For each pair of organizations it is

possible to construct a four-vector of zeros and ones indicating the

presence or absence of (support out, support in, money out, money in).

Consider for the moment just the support relationship. A pair of

organizations are said to have a Mutual relationship if t hey support

each other (i.e., (support out, support in) = (1,1)) , a Null relation-

ship if neither supports the other (i.e., (0,0)) , or an Asyimetric

relationship if support is unreciprocated (i.e., (0,1) or (1,0))

If we aggregate over all ( = 2628 pairs of organizations there

are ten distinguishable support-money relationships, namely,
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NM with four vector (1,1,1,1)

MA (1,1,0,1) or (1,1,1,0)

MN (1,1,0,0)

AM (0,1,1,1) or (1,0,1,1)

AA (0,1,0,1) or (1,0,1,0)

AA (0,1,1,0) or (1,0,0,1)

AN (0,1,0,0) or (1,0,0,0)

NM (0,0,1,1)

NA (0,0,1,0) or (0,0,0,1)

NN (0,0,0,0)

Notice that when both relationships are asymmetric there are two

different cases, corresponding to whether the relationships flow in

the same or in different ways. We denote the table of observed

probabilities by z where for example zM is the number of mutual-

mutual relationships divided by C73). The table is represented by

MONEY

M A N

M z M MA zMLN

U

z s AM zAN
A A

0 2
R

N ZNM ZNA ZN

Fienberg, Meyer and Wasserman (1981) model the probability,

q {qab ; a,b - MA,N) that a randomly selected dyad will be assigned

abT
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to a certain cell. They consider linear models for

ab ; a,b = M,A,N) where

log (qa) if a,b each equal M or N

ab = og(q ab/2) if either a or b equals A

These models are affine translations of loglinear models for q The

arguments presented here apply to all of their models.

The model we consider takes as a linear space, E , of p.m.f.'s the

set of tables, s , which have margins sa and s+b a,b = M,A,N,

which are the same as the corresponding margins for the z-table. For

example we require

S s s s z + z +- + zSA+ SAM +SAA AA+ SAN = ZAM AA A+ AN A+

In order to have the model be linear in I, we need

q IP (r)

where
1 if a,b each equal M or N

ab if either a or b equal A

As the model space can be spanned by vectors consisting of O's and l's,

the simple IPFP, which takes an initial table, r, and successively

adjusts the row and column "margins" to match those in the observed

table, can be used. This algorithm is easy to do by hand, but because

the z-table is not rectangular (i.e., it has 10 cells rather than the

9 one would expect), and consequently has an extended interpretation of

J-
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margin totals, many standard IPFP computer programs would not be able to

analyze this table. Moreover, for many of the models considered by

Fienberg, Meyer and Wasserman the models are not so simple and the

computations on the z-table require more than the simple

IPFP .. For this reason we prefer to work with a transformed problem,

where the sufficient statistics for the models can be represented by

simple marginal totals.

An alternate, though somewhat deceptive, description of the data

is to consider four-vectors for each of the (23) x 2 ordered pairs of

organizations and to aggregate this into a 24 table, y - yijkk

i,j,k,t = 1,2 , where a 1 indicates the presence of a flow and a 2

indicates the absence of a flow. Thus y1111  is the number of mutual-

mutual relationships divided by 5256. The y table duplicates certain

relationships and gives double weight to certain others. The y-table

has the form,

money out 1 2

money in 1 2 1 2

supp out supp in

1 Yllll Y1112  Yl21 YI12 2
1

2 •

1
2

2

We now consider the transformation which maps the z-table into the

y-table; viz.,
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2zHM ZMA z,, 2z,

z z z- zAM ZAA AA AN

z z-
ZAM ZA.. ZAA zAN

2ZNM ZNA ZNA 2ZNN

1

We denote the factors support (out, in), money (out, in) by the

numbers 1, 2, 3, and 4. It is now easy to see that the marginal sums

considered for the z-table can all be found (twice) in the [12] and

[34] margins of the y-table. Also note that the y-table has a strong

symmelxy, yijkk ' Yjikk V ijkZ . Now g( E ) is just the set of tables

which have (i) the correct [12] and [34] margins and (ii) preserve the

observed symmetry in the y-table. Consider just the first of these

conditions ignoring the symmetry constraint. It is this model which

we shall consider to be E • As we have relaxed some conditions it is

clear that g(E) c E*•

From here on the argument proceeds in the same manner as in the

single relationship case. It is convenient now to explicitly define

the space E and the conditions we need to verify to show that

F ,(g(r)) is in g(E). Consider

F fl'''' f 8 where
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S 1 1 f4 0= 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 000 1111

f5 1 0 00 f8 0 0 0 1

0 0 0 0 0 0 1

1 0 0 0 0 0 0 1

10 0 0 0 0 1

and constants A* = {a,,..., a8) where a. <fj.,g(z)> Note that

a2 - a3  and a6  a 7 . We define E to be the space of P.D.'s

defined by F * and A**. Now consider the symmetry transformation:

h : yijk y YJi~k "

For Pe,(g(r)) to be in g(E ) we require

h( P,*(g(r)) - PE,(g(r))

It is possible to assert this because the space E is invariant

under h. Specifically h(fi) = i for i -1,4,5,8 and h(f2) f3

h(f3) =f 2  h(f7) - f6  and h(f6) = 7 Because a2 -a 3  and

a6 a a7  the linear space h(E*) generated by h(F*) and h(A4) is
*

the same as E We also note that h(g(r)) - g(r) , because of the

nature of g function. That is the starting values necessarily satisfy

the symmetry constraints. Now let
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Aq* =P E (g(r)) and

* = ~hr (h(g(r))) =
q h (E)E

But note that q* h(q*) as all we have done is relabel the

co-ordinates. Thus

i.e., the fitted P.D. is (i) invariant under h and (ii) is in E*-

Thus q* is in g(E) and g (q*) is the fitted P.D. in the space

of Z-tables.

For any of the other models considered by Fienberg, Meyer and

Wasserman, it is easy to show that the space, E , is invariant under

h and thus the above argument still works.

In these examples, g(r) is the uniform distribution; thus the

IPFF with starting value all ones is an appropriate algorithm. For

some of the models, the appropriate margins of the y*-table represent

a decomposable model; in fact the model [12], (341 is itself decom-

posable. Thus we have not only found an easy computational procedure,

but have also discovered closed-form estimates for some of the models.

The existence and nature of closed-form ertima"er varies wirh the

number of relationships between actors which are modeled.

The analysis of the multiple relationship data that we have considered

has been for the data aggregated over all the actors. In some

situations it may be desirable to aggregate over only groups of actors,

in which case there is a 2 (or with 3 relationships, 2 6 table for
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each group of actors. In this manner it is possible for the number of

entries in the table, and the number of parameters in the corresponding

models, to grow very large. Under these circumstances the transforma-

tion techniques outlines in this chapter prove to be of considerable

practical use.

6. Desiderata

We conclude this chapter with a few questions and cautions. The

examples have shown situations where, for reasons of computational ease,

it was desirable to transform a contingency table into a related but

larger table. In the transformed table it was possible to fit a model

using the standard IPFP whereas in the original table the corresponding

model would have required a more complicated algorithm. This approach

of using transformed tables is especially important in practice as

versiuns of the standard IPFP are widely available and easy to use. An

additional bonus which can sometimes be found in the transformed table

is the existence of closed form maximum likelihood estimates. The theory

about when closed form estimates exist in complete tables with factorial

models is well known and such situations are easily recognized. On the

contrary, when a table is incomplete or has a more complicated structure,

very little is known about the existence of closed form estimates. Our

techniques have merely scratched the surface of the more general question

of closed form estimates. A more general theory of closed form estimates

for arbitrary loglinear models would seem desirable; perhaps investigations

of the more general IPFP will aid in this.



34

Throughout our discussion we have ignored the important questions

of degree of freedom calculations and asyinptotic covariance estimates

for the M.L.E. When g(E ) E E , that is we are essentially only

relabeling the problem, then any d.f. and covariances calculated in E

can be transformed back to E . When g(E ) E E special care must

be taken to calculate the appropriate d.f. in E . We know of no

exact procedure for transforming covariance estimates in E back to

E and suspect that it is not possible.

I
I

Il
" ' -- . . . . . I| II . .. . . . . . .
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